1. Consider the hypothetical generating function \(F = F_5(Q_i, P_i, t) + \lambda \sum q_i P_i \) where \(\lambda \) is a constant. Under what conditions is this a proper generating function? Is it one of the four types of generating functions discussed in the text, or fundamentally different? When \(F \) is a proper generating function, describe its effect.

2. The Hamiltonian for a one-dimensional particle of mass \(m \) may be written as
\[
H = \frac{p^2}{2m} + V(x),
\]
where \(x \) is the usual coordinate and \(p \) the corresponding conjugate momentum.

(a) Find the generating function for the Galilean transformation \((x, p) \rightarrow (X, P)\) defined by \(X = x - v_0 t, P = p - mv_0 \).

(b) Find the new Hamiltonian of the system in terms of \(X \) and \(P \).

3. (a) Show that if \(a \) is a constant, then the transformation
\[
X = p + iax, \quad P = \frac{p - iax}{2ia},
\]
is canonical. Use the symplectic technique, i.e., show that \(MJM^T = J \), where \(M \) is the Jacobian matrix of the transformation.

(b) For the linear harmonic oscillator
\[
H = \frac{p^2}{2m} + \frac{kx^2}{2},
\]
choose \(a \) so that only one term remains in the new Hamiltonian (written in terms of \(X \) and \(P \)). Use Hamilton’s equations to solve for \(X \) and \(P \) as functions of time. Given initial conditions \(x = x_0 \) and \(p = p_0 \) at \(t = 0 \), find \(x \) and \(p \) as functions of time.

4. Evaluate the Poisson bracket \([Q, P]\) and find the conditions under which the following transformations are canonical.

(a) \(Q = q^\alpha \cos \beta p, \quad P = q^\alpha \sin \beta p \), where \(\alpha \) and \(\beta \) are constants.

(b) \(Q = \alpha p^{n_1} q^{n_2}, \quad P = \beta p^{n_3} q^{n_4} \), where \(\alpha, \beta, n_1, n_2, n_3, \) and \(n_4 \) are constants. Show that there is a three-dimensional family of transformations of this type, i.e., there is a family of transformations parametrized by three independent variables. Determine the range of allowed values for those variables.