1. Consider two objects, each with mass m, which are attached to springs as shown in the diagram below. The equilibrium lengths of the springs can be taken as zero, and the ends of the springs at $(0, 0)$ and $(a, 0)$ are fixed. Assume that the gravitational field is uniform and acts downward with strength g.

(a) Find the equilibrium positions of the two objects. Verify that the equilibrium is stable.

(b) Find the normal mode frequencies and the normal mode coordinates. [Hint: note that the x and y coordinates decouple from each other and can be solved for separately.]

2. Consider two masses that are attached to springs as shown below and are constrained to move in one dimension with no friction. The coordinates x_1 and x_2 are measured from the equilibrium position, i.e., at $x_1 = 0$ and $x_2 = 0$ all springs are at their equilibrium length. The spring constant k' is much smaller than the other spring constants.

(a) For the unperturbed problem, i.e., in the limit that $k' = 0$, what are the normal mode frequencies and coordinates? [Hint: this should be easy!]

(b) If $k' = \epsilon k$ and $\epsilon \ll 1$, use perturbation theory to find the normal mode frequencies and coordinates to leading order in ϵ.