1. First we find the velocity

\[r = (x_0 + at^2, bt^3, ct) \]
\[v = \frac{dr}{dt} = (2at, 3bt^2, c) \]

Then

\[L = m r \times v = m \begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ x_0 + at^2 & bt^3 & ct \\ 2at & 3bt^2 & c \end{vmatrix} \]
\[= m [\dot{x}(cbt^3 - 3bt^2ct) - \dot{y}(c(x_0 + at^2) - 2atct) + \dot{z}(3bt^2(x_0 + at^2) - 2atbt^3)] \]
\[= -2mbct^3\dot{x} - m(cx_0 - act^2)\dot{y} + m(3bx_0t^2 + abt^4)\dot{z}. \]

The force is

\[F = m\ddot{r} = m\dot{v} = m(2a, 6bt, 0) = (2ma, 6mbt, 0). \]

The torque is

\[\tau = \frac{dL}{dt} = [-6mbct^2\dot{x} + 2mact\dot{y} + m(6bx_0t + 4abt^3)\dot{z}] . \]

and also

\[\tau = r \times F = \begin{vmatrix} \dot{x} & \dot{y} & \dot{z} \\ x_0 + at^2 & bt^3 & ct \\ 2ma & 6mbt & 0 \end{vmatrix} \]
\[= \dot{x}(-6mbct) - \dot{y}(-2mabt^3) + \dot{z}(6mbt(x_0 + at^2) - 2mabt^3) \]
\[= -6mbct^2\dot{x} + 2mact\dot{y} + (6mbx_0t + 4mabt^3)\dot{z} \]

which is the same as \(\frac{dL}{dt} \).

2. The vector equation is

\[ma = -kr - bv \]

with component equations given by

\[m\ddot{x} = -kx - b\dot{x}, \quad m\ddot{y} = -ky - b\dot{y}, \quad m\ddot{z} = -kz - b\dot{z}. \]

Each of these is a 1-D damped harmonic oscillator. Since it is underdamped the solutions look like

\[x = (A_x \cos \omega_1 t + B_x \sin \omega_1 t)e^{-\gamma t} \]

with similar solutions for \(y \) and \(z \), and \(\omega_1^2 = \omega_0^2 - \gamma^2 \), \(\omega_0^2 = k/m \) and \(\gamma = b/(2m) \). The velocity is

\[v_x = [(-\gamma B_x - A_x \omega_1) \sin \omega_1 t + (\omega_1 B_x - \gamma A_x) \cos \omega_1 t] e^{-\gamma t} \]
with similar solutions for \(v_y \) and \(v_z \). Using the initial condition \(\mathbf{r}_0 = (x_0, 0, 0) \) we find

\[
A_x = x_0, \quad A_y = 0, \quad A_z = 0
\]

and using \(\mathbf{v}_0 = (0, v_0, 0) \) we get

\[
B_x = \gamma x_0/\omega_1, \quad B_y = v_0/\omega_1, \quad B_z = 0
\]

so the solution is

\[
\mathbf{r}(t) = [x_0(\cos \omega_1 t + (\gamma/\omega_1) \sin \omega_1 t)e^{-\gamma t}, (v_0/\omega_1) \sin \omega_1 t e^{-\gamma t}, 0].
\]

After \(n \) cycles, \(t = nT \), where \(T = 2\pi/\omega_1 \) is the period. Then \(\cos \omega_1 t = \cos(2\pi n) = 1 \) and \(\sin \omega_1 t = \sin(2\pi n) = 0 \), and so \(x = x_0 e^{-\gamma nT} \) and \(y = 0 \). The distance from the origin after \(n \) cycles is then

\[
r = \sqrt{x^2 + y^2} = x_0 e^{-\gamma nT} = x_0 e^{-2\pi \gamma n/\omega_1}.
\]

3. A force is conservative if \(\nabla \times \mathbf{F} = 0 \).

(a) This is in Cartesian coordinates so we have

\[
\nabla \times \mathbf{F} = \begin{vmatrix}
\hat{x} & \hat{y} & \hat{z} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
2axy^2 + by & 2ax^2 y + bx & ax^2 y^2 \\
\end{vmatrix}
= \hat{x}(2ax^2 y - 2axy^2) - \hat{y}(2axy^2 - 2axy^2) + \hat{z}(4axyz + b - 4axyz - b) = 0
\]

so this force is conservative. To find the potential energy \(V = -\int \mathbf{F} \cdot d\mathbf{r} \) we can integrate from the origin to a general position \((x, y, z)\) via the path \((0, 0, 0) \rightarrow (x, 0, 0) \rightarrow (x, y, 0) \rightarrow (x, y, z)\). This gives three terms

\[
V = -\left(\int_0^x F_x \, dx \right)_{y=z=0} - \left(\int_0^y F_y \, dy \right)_{x=x,z=0} - \left(\int_0^z F_z \, dz \right)_{x=x,y=y}.
\]

The integrals are straightforward and give

\[
V = -bxy - (ax^2 y^2 z) = -ax^2 y^2 z - bxy.
\]

Note that the first integral is zero since \(z = 0 \) along that part of the path, and one of the terms in the second integral is also zero for the same reason. Since it is a conservative force, taking any other path should give the same result.

(b) This force is in cylindrical coordinates so

\[
\nabla \times \mathbf{F} = \hat{\rho} \left[\frac{1}{\rho} \frac{\partial F_\phi}{\partial \phi} - \frac{\partial F_\rho}{\partial z} \right] + \hat{\phi} \left[\frac{\partial F_\rho}{\partial z} - \frac{\partial F_\phi}{\partial \rho} \right] + \hat{z} \left[\frac{1}{\rho} \frac{\partial (\rho F_\phi)}{\partial \rho} - \frac{1}{\rho} \frac{\partial F_\rho}{\partial \phi} \right].
\]
In this case $F_\rho = -3a\rho^2 \cos \phi$, $F_\phi = a\rho^2 \sin \phi$ and $F_z = 3az^2$, so

$$\nabla \times F = \hat{\rho}[0 - 0] + \hat{\phi}[0 - 0] + \hat{z}\left[\frac{1}{\rho}(3a\rho^2 \sin \phi) - \frac{1}{\rho}(3a\rho^2 \sin \phi)\right] = 0.$$

Thus this force is also conservative. To find the potential, we can integrate in (ρ, ϕ, z) space from $(0, 0, 0) \rightarrow (\rho, \phi, 0) \rightarrow (\rho, \phi, z)$ where the first step has ρ varying with ϕ set at a constant value and the second has z varying with ρ and ϕ fixed, i.e.,

$$V = -\left(\int_0^\rho F_\rho d\rho\right)_{\phi=\phi, z=0} - \left(\int_0^z F_z dz\right)_{\rho=\rho, \phi=\phi}.$$

The integrals are easy to do and

$$V = -(a\rho^3 \cos \phi) - (az^3) = a\rho^3 \cos \phi - az^3.$$

Note that we did not have to take three steps, since the first step was done in the radial direction at the angle ϕ, which took care of both the radial distance and angle in the $x-y$ plane. This was possible since at $\rho = 0$, any value of ϕ is allowed. If we had done an integral with ϕ varying, it would have looked like $\int F_\rho \rho d\phi$, since $\rho d\phi$ is the infinitesimal displacement along the ϕ direction (it must have dimensions of distance).

(c) This force is in spherical polar coordinates so

$$\nabla \times F = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta}(F_\phi \sin \theta) - \frac{\partial F_\theta}{\partial \phi}\right] \hat{\rho} + \frac{1}{r} \left[\frac{\partial F_\rho}{\partial \theta} - \frac{\partial F_\theta}{\partial \rho}\right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial F_\rho}{\partial r} - \frac{\partial F_\phi}{\partial \theta}\right] \hat{\phi}.$$

In this case $F_\rho = -2ar \sin \theta \cos \phi$, $F_\theta = -ar \cos \theta \cos \phi$ and $F_\phi = ar \sin \theta \sin \phi$. Looking at the $\hat{\rho}$ component we get $[(2ar \sin \theta \cos \phi \sin \phi) - (ar \cos \theta \sin \phi)] / (r \sin \theta) \neq 0$, so this force is not conservative. Note: if you calculated the $\hat{\theta}$ and $\hat{\phi}$ components of $\nabla \times \mathbf{F}$, they should be zero.

4. (a) Substituting $r = \sqrt{x^2 + y^2}$ and $\cos \theta = x/r$ into $r = r_0 \cos \theta$ gives $\sqrt{x^2 + y^2} = r_0 x / \sqrt{x^2 + y^2}$, or $x^2 + y^2 = r_0^2$. By completing the square in x we get $(x - r_0/2)^2 + y^2 = r_0^2/4$. This is a circle with radius $\sqrt{r_0^2/4} = r_0/2$ and centered at $(r_0/2, 0)$ in the $x-y$ plane.

(b) Converting from r to the variable $u = 1/r$, we get $u = 1/(r_0 \cos \theta)$ and $F = k/u^n$. Then Eq. 3.222 in the text is $d^2u/d\theta^2 = -u - (m/L^2u^2)(k/u^n)$. Finding the derivatives of u:

$$\frac{du}{d\theta} = \frac{1}{r_0 \cos \theta} \sin \theta, \quad \frac{d^2u}{d\theta^2} = \frac{1}{r_0} \left(\frac{\cos \theta}{\cos^2 \theta} + \frac{2 \sin^2 \theta}{\cos^3 \theta}\right) = \frac{1}{r_0} \left(\frac{\cos^2 \theta + 2 \sin^2 \theta}{\cos^3 \theta}\right) = \frac{1}{r_0} \frac{1 + \sin^2 \theta}{\cos^3 \theta}.$$

Also $-u = -\cos^2 \theta / (r_0 \cos^4 \theta)$, so plugging into the differential equation gives

$$\frac{1}{r_0} \frac{1 + \sin^2 \theta}{\cos^3 \theta} = \frac{1}{r_0} \frac{\cos^2 \theta}{\cos^3 \theta} - \frac{m}{L^2} \frac{(r_0 \cos \theta)^2 k(r_0 \cos \theta)^n}{r_0 \cos^4 \theta},$$

$$\frac{1}{r_0} \frac{2}{\cos^3 \theta} = \frac{mk}{L^2} r_0^{2n} (\cos \theta)^{2+n}.$$

For this to be true for all values of θ, the $\cos \theta$ terms must match, so $n = -5$. Then $2/r_0 = -mk/(L^2r_0^3)$, or $r_0 = \sqrt{-mk/(2L^2)}$, which implies $k = -2L^2r_0^3/m$. Note that the force must be attractive, since $k < 0$.
